资源类型

期刊论文 433

会议视频 7

年份

2023 44

2022 32

2021 41

2020 31

2019 16

2018 16

2017 16

2016 21

2015 23

2014 22

2013 24

2012 24

2011 21

2010 18

2009 25

2008 17

2007 17

2006 4

2005 3

2004 1

展开 ︾

关键词

2型糖尿病 3

医学 3

勘探开发 2

发酵 2

合成生物学 2

吸附 2

新型 2

核酸检测 2

能源 2

营养健康 2

高含硫 2

&gamma 1

2-羟基丁酸 1

3-酰基硫代四酸 1

AHP法 1

CCK-8 实验 1

CO 1

COVID-19 1

Cas12a 1

展开 ︾

检索范围:

排序: 展示方式:

Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor

Sheng CHANG, Jianzheng LI, Feng LIU

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 140-148 doi: 10.1007/s11783-010-0258-2

摘要: An anaerobic contact reactor (ACR) system comprising a continuous flow stirred tank reactor (CSTR) with settler to decouple the hydraulic retention time (HRT) from solids retention time (SRT) was developed for fermentative hydrogen production from diluted molasses by mixed microbial cultures. The ACR was operated at various volumetric loading rates (VLRs) of 20–44 kgCOD·m ·d with constant HRT of 6 h under mesophilic conditions of 35°C. The SRT was maintained at about 46–50 h in the system. At the initial VLR of 20 kgCOD·m ·d , the hydrogen production rate dropped from 22.6 to 1.58 L·d as the hydrogen was consumed by the hydrogentrophic methanogen. After increasing the VLR to 28 kgCOD·m ·d and discharging the sludge for 6 consecutive times, the hydrogentrophic methanogens were eliminated, and the hydrogen content reached 36.4%. As the VLR was increased to 44 kgCOD·m ·d , the hydrogen production rate and hydrogen yield increased to 42.1 L·d and 1.40 mol H ·molglucose-consumed , respectively. The results showed that a stable ethanol-type fermentation that favored hydrogen production in the reactor was thus established with the sludge loading rate (SLR) of 2.0–2.5 kgCOD·kgMLVSS ·d . It was found that the ethanol increased more than other liquid fermentation products, and the ethanol/acetic acid (mol/mol) ratio increased from 1.27 to 2.45 when the VLR increased from 28 to 44 kgCOD·m ·d , whereas the hydrogen composition decreased from 40.4% to 36.4%. The results suggested that the anaerobic contact reactor was a promising bioprocess for fermentative hydrogen production.

关键词: fermentative hydrogen production     anaerobic contact reactor (ACR)     sludge loading rate (SLR)     butyric acid-type fermentation     ethanol-type fermentation    

High production of butyric acid by

Chao Ma,Jianfa Ou,Matthew Miller,Sarah McFann,Xiaoguang (Margaret) Liu

《化学科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 369-375 doi: 10.1007/s11705-015-1525-3

摘要: The objective of this study was to improve the production of butyric acid by process optimization using the metabolically engineered mutant of (PAK-Em). First, the free-cell fermentation at pH 6.0 produced butyric acid with concentration of 38.44 g/L and yield of 0.42 g/g. Second, the immobilized-cell fermentations using fibrous-bed bioreactor (FBB) were run at pHs of 5.0, 5.5, 6.0, 6.5 and 7.0 to optimize fermentation process and improve the butyric acid production. It was found that the highest titer of butyric acid, 63.02 g/L, was achieved at pH 6.5. Finally, the metabolic flux balance analysis was performed to investigate the carbon rebalance in . The results show both gene manipulation and fermentation pH change redistribute carbon between biomass, acetic acid and butyric acid. This study demonstrated that high butyric acid production could be obtained by integrating metabolic engineering and fermentation process optimization.

关键词: Clostridium tyrobutyricum     butyric acid production     fermentation     mutant     pH     flux balance analysis    

The role of lipids in fermentative propionate production from the co-fermentation of lipid and food waste

《环境科学与工程前沿(英文)》 2023年 第17卷 第7期 doi: 10.1007/s11783-023-1686-0

摘要:

● Lipid can promote PA production on a target from food waste.

关键词: Acidogenic fermentation     Microbial community     Volatile fatty acid     Propionate     Food waste     Lipid    

Purification and concentration of gluconic acid from an integrated fermentation and membrane process

Parimal Pal, Ramesh Kumar, Subhamay Banerjee

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 152-163 doi: 10.1007/s11705-018-1721-z

摘要: A response surface method was used to optimize the purification and concentration of gluconic acid from fermentation broth using an integrated membrane system. was used for the bioconversion of the glucose in sugarcane juice to gluconic acid (concentration 45 g?L ) with a yield of 0.9 g?g . The optimum operating conditions, such as trans-membrane pressure (TMP), pH, cross-flow rate (CFR) and initial gluconic acid concentration, were determined using response surface methodology. Five different types of polyamide nanofiltration membranes were screened and the best performing one was then used for downstream purification of gluconic acid in a flat sheet cross-flow membrane module. Under the optimum conditions (TMP= 12 bar and CFR= 400 L?h ), this membrane retained more than 85% of the unconverted glucose from the fermentation broth and had a gluconic acid permeation rate of 88% with a flux of 161 L?m ?h . Using response surface methods to optimize this green nanofiltration process is an effective way of controlling the production of gluconic acid so that an efficient separation with high flux is obtained.

关键词: gluconic acid     optimized nanofiltration     green processing     process intensification    

Detoxification and concentration of corn stover hydrolysate and its fermentation for ethanol production

Qing Li, Yingjie Qin, Yunfei Liu, Jianjun Liu, Qing Liu, Pingli Li, Liqiang Liu

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 140-151 doi: 10.1007/s11705-018-1714-y

摘要: Environmental and energy concerns have increased interest in renewable energy sources, particularly biofuels. Thus the fermentation of glucose from sulfuric acid-hydrolyzed corn stover for the production of bioethanol has been explored using a combined acid retardation and continuous-effect membrane distillation treatment process. This process resulted in the separation of the sugars and acids from the acid-catalyzed hydrolysate, the removal of most of the fermentation inhibitors from the hydrolysate and the concentration of the detoxified hydrolysate. The recovery rate of glucose from the sugar-acid mixture using acid retardation was greater than 99.12% and the sulfuric acid was completely recovered from the hydrolysate. When the treated corn stover hydrolysate, containing 100 g/L glucose, was used as a carbon source, 43.06 g/L of ethanol was produced with a productivity of 1.79 g/(L?h) and a yield of 86.31%. In the control experiment, where glucose was used as the carbon source these values were 1.97 g/(L?h) and 93.10% respectively. Thus the integration of acid retardation and a continuous-effect membrane distillation process are effective for the production of fuel ethanol from corn stover.

关键词: corn stover     hydrolysate     acid retardation     continuous-effect membrane distillation     ethanol fermentation    

Use of dry yeast cells as a cheap nitrogen source for lactic acid production by thermophilic

Kim Yng Ooi, Jin Chuan Wu

《化学科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 381-385 doi: 10.1007/s11705-015-1534-2

摘要: Dry yeast cells (DYC) were used as a cheap nitrogen source to replace expensive yeast extract (YE) for L-lactic acid production by thermophilic . Cassava starch (200 g·L ) was converted to L-lactic acid by simultaneous saccharification and fermentation using WCP10-4 at 50 °C in the presence of 20 g·L of DYC, giving 148.1 g·L of L-lactic acid at 27 h with a productivity of 5.5 g·L ·h and a yield of 92%. In contrast, 154.4 g·L of lactic acid was produced at 24 h with a productivity of 6.4 g·L ·h and a yield of 96% when equal amount of YE was used under the same conditions. Use of pre-autolyzed DYC at 50 °C for overnight slightly improved the lactic acid titer (154.5 g·L ) and productivity (7.7 g·L ·h ) but gave the same yield (96%).

关键词: L-lactic acid     thermophilic strain     Bacillus coagulans     dry yeast cells     autolysis     fermentation    

Metabolic flux analysis on arachidonic acid fermentation

JIN Mingjie, HUANG He, ZHANG Kun, YAN Jie, GAO Zhen

《化学科学与工程前沿(英文)》 2007年 第1卷 第4期   页码 421-426 doi: 10.1007/s11705-007-0077-6

摘要: The analysis of flux distributions in metabolic networks has become an important approach for understanding the fermentation characteristics of the process. A model of metabolic flux analysis of arachidonic acid (AA) synthesis in ME-1 was established and carbon flux distributions were estimated in different fermentation phases with different concentrations of N-source. During the exponential, decelerating and stationary phase, carbon fluxes to AA were 3.28%, 8.80% and 6.97%, respectively, with sufficient N-source broth based on the flux of glucose uptake, and those were increased to 3.95%, 19.21% and 39.29%, respectively, by regulating the shifts of carbon fluxes via fermentation with limited N-source broth and adding 0.05% NaNO at 96 h. Eventually AA yield was increased from 1.3 to 3.5 g · L. These results suggest a way to improve AA fermentation, that is, fermentation with limited N-source broth and adding low concentration N-source during the stationary phase.

关键词: AA     different fermentation     concentration N-source     exponential     metabolic    

A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid

Tingting MA, Ying TENG, Peter CHRISTIE, Yongming LUO, Yongshan CHEN, Mao YE, Yujuan HUANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 31-42 doi: 10.1007/s11783-012-0463-2

摘要: An optimized procedure based on gas chromatography-mass spectrometry (GC-MS) combined with accelerated solvent extraction (ASE) is developed for the analysis of six phthalic acid esters (PAEs), which are priority soil pollutants nominated by United States Environmental Protection Agency (USEPA). Quantification of PAEs in soil employs ultrasonic extraction (UE) (USEPA 3550) and ASE (USEPA 3545), followed by clean up procedures involving three different chromatography columns and two combined elution methods. GC-MS conditions under selected ion monitoring (SIM) mode are described and quality assurance and quality control (QA/QC) criteria with high accuracy and sensitivity for target analytes were achieved. Method reliability is assured with the use of an isotopically labeled PAE, di- -butyl phthalate-d4 (DnBP-D4), as a surrogate, and benzyl benzoate (BB) as an internal standard, and with the analysis of certified reference materials (CRM). QA/QC for the developed procedure was tested in four PAE-spiked soils and one PAE-contaminated soil. The four spiked soils were originated from typical Chinese agricultural fields and the contaminated soil was obtained from an electronic waste dismantling area. Instrument detection limits (IDLs) for the six PAEs ranged 0.10–0.31 μg·L and method detection limits (MDLs) of the four spiked soils varied from a range of 20–70 μg·kg to a range of 90– 290 μg·kg . Linearity of response between 20 μg·L and 2 mg·L was also established and the correlation coefficients ( ) were all>0.998. Spiked soil matrix showed relative recovery rates between 75 and 120% for the six target compounds and about 93% for the surrogate substance. The developed procedure is anticipated to be highly applicable for field surveys of soil PAE pollution in China.

关键词: phthalic acid esters     quality assurance and quality control     soil type     accelerated solvent extraction     certified reference materials    

Improved energy recovery from dark fermented cane molasses using microbial fuel cells

Soumya Pandit, Balachandar G, Debabrata Das

《化学科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 43-54 doi: 10.1007/s11705-014-1403-4

摘要: A major limitation associated with fermentative hydrogen production is the low substrate conversion efficiency. This limitation can be overcome by integrating the process with a microbial fuel cell (MFC) which converts the residual energy of the substrate to electricity. Studies were carried out to check the feasibility of this integration. Biohydrogen was produced from the fermentation of cane molasses in both batch and continuous modes. A maximum yield of about 8.23 mol H /kg COD was observed in the batch process compared to 11.6 mol H /kg COD in the continuous process. The spent fermentation media was then used as a substrate in an MFC for electricity generation. The MFC parameters such as the initial anolyte pH, the substrate concentration and the effect of pre-treatment were studied and optimized to maximize coulombic efficiency. Reductions in COD and total carbohydrates were about 85% and 88% respectively. A power output of 3.02 W/m was obtained with an anolyte pH of 7.5 using alkali pre-treated spent media. The results show that integrating a MFC with dark fermentation is a promising way to utilize the substrate energy.

关键词: dark fermentation     biohydrogen     microbial fuel cell     volatile fatty acid     anolyte    

Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic

K. Manikandan, T. Viruthagiri

《化学科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 240-249 doi: 10.1007/s11705-009-0205-6

摘要: Studies on simultaneous saccharification and fermentation (SSF) of wheat bran flour, a grain milling residue as the substrate using coculture method were carried out with strains of starch digesting and nonstarch digesting and sugar fermenting in batch fermentation. Experiments based on central composite design (CCD) were conducted to maximize the glucose yield and to study the effects of substrate concentration, pH, temperature, and enzyme concentration on percentage conversion of wheat bran flour starch to glucose by treatment with fungal α-amylase and the above parameters were optimized using response surface methodology (RSM). The optimum values of substrate concentration, pH, temperature, and enzyme concentration were found to be 200 g/L, 5.5, 65°C and 7.5 IU, respectively, in the starch saccharification step. The effects of pH, temperature and substrate concentration on ethanol concentration, biomass and reducing sugar concentration were also investigated. The optimum temperature and pH were found to be 30°C and 5.5, respectively. The wheat bran flour solution equivalent to 6% ( / ) initial starch concentration gave the highest ethanol concentration of 23.1 g/L after 48 h of fermentation at optimum conditions of pH and temperature. The growth kinetics was modeled using Monod model and Logistic model and product formation kinetics using Leudeking-Piret model. Simultaneous saccharificiation and fermentation of liquefied wheat bran starch to bioethanol was studied using coculture of amylolytic fungus and nonamylolytic sugar fermenting .

关键词: simultaneous saccharification and fermentation (SSF)     starch     coculture fermentation     statistical experimental design     bioethanol     Monod model    

Repeated batch fermentation with water recycling and cell separation for microbial lipid production

Yumei WANG, Wei LIU, Jie BAO

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 453-460 doi: 10.1007/s11705-012-1210-8

摘要: Large waste water disposal was the major problem in microbial lipid fermentation because of low yield of lipid. In this study, the repeated batch fermentation was investigated for reducing waste water generated in the lipid fermentation of an oleaginous yeast CX1 strain. The waste fermentation broth was recycled in the next batch operation after the cells were separated using two different methods, centrifugation and flocculation. Two different sugar substrates, glucose and inulin, were applied to the proposed operation. The result showed that at least 70% of the waste water was reduced, while lipid production maintained satisfactory in the initial four cycles. Furthermore, it is suggested that CX1 cells might produce certain naturally occurring inulin hydrolyzing enzyme(s) for obtaining fructose and glucose from inulin directly. Our method provided a practical option for reducing the waste water generated from microbial lipid fermentation.

关键词: batch fermentation     microbial lipid     Trichosporon cutaneum CX1     flocculation     waste water recycle    

Simultaneous saccharification and fermentation of sweet potato powder for the production of ethanol under

Yinxiu CAO, Hongchi TIAN, Kun YAO, Yingjin YUAN

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 318-324 doi: 10.1007/s11705-010-1026-3

摘要: Due to its merits of drought tolerance and high yield, sweet potatoes are widely considered as a potential alterative feedstock for bioethanol production. Very high gravity (VHG) technology is an effective strategy for improving the efficiency of ethanol fermentation from starch materials. However, this technology has rarely been applied to sweet potatoes because of the high viscosity of their liquid mash. To overcome this problem, cellulase was added to reduce the high viscosity, and the optimal dosage and treatment time were 8 U/g (sweet potato powder) and 1 h, respectively. After pretreatment by cellulase, the viscosity of the VHG sweet potato mash (containing 284.2 g/L of carbohydrates) was reduced by 81%. After liquefaction and simultaneous saccharification and fermentation (SSF), the final ethanol concentration reached 15.5% (v/v), and the total sugar conversion and ethanol yields were 96.5% and 87.8%, respectively.

关键词: bioethanol     sweet potato     very high gravity     viscosity reduction     simultaneous saccharification and fermentation    

Biological hydrogen production from organic wastewater by dark fermentation in China: Overview and prospects

Nanqi REN, Wanqian GUO, Bingfeng LIU, Guangli CAO, Jing TANG

《环境科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 375-379 doi: 10.1007/s11783-009-0148-7

摘要: Biological hydrogen production by dark fermentation is an important part of biological hydrogen production technologies. China is a typical developing country that heavily relies on fossil fuels; thus, new, clean, and sustainable energy development turns quite urgent. It is delightful that Chinese government has already drawn up several H2 development policies since 1990s and provided financial aid to launch some H development projects. In this paper, the research status on dark fermentative hydrogen production in China was summarized and analyzed. Subsequently, several new findings and achievements, with some of which transformed into scale-up tests, were highlighted. Moreover, some prospecting coupling processes with dark fermentation of hydrogen production were also proposed to attract more research interests in the future.

关键词: biological hydrogen production     dark fermentation     overview     prospects    

Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates

Jinchao WEI, Qipeng YUAN, Tianxin WANG, Le WANG,

《化学科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 57-64 doi: 10.1007/s11705-009-0295-1

摘要: Xylitol, a five-carbon sugar alcohol, is a valuable sugar substitute, and widely used in the pharmaceutical, odontological and food industry due to its interesting properties. In the past decades, the xylitol industry has grown rapidly and more attention has been focused on xylitol purification, which possesses an important proportion of the whole industry. In our paper, the purification and crystallization of xylitol fermentation broth by biotechnology using corncob hydrolysates as substance were studied. An initial xylitol fermentation broth was decolored with activated carbon (1% M-1, 60°C, 165rpm), desalted with a combination of two ion-exchange resins (732 and D301), and residual sugars were separated with UBK-555(Ca). Then the solution was vacuum-concentrated up to supersaturation (750g/L xylitol). After adding 1% xylitol crystal seeds, the supersaturated solution was cooled to −20°C for 48h. The crystalline xylitol of a regular tetrahedral shape with purity 95% and crystallization yield 60.2% was obtained from the clarified xylitol fermentation broth. An intact, economical and environmental-friendly route of purification and crystallization of xylitol from fermentation of corncob hydrolysates was obtained, and its experimental procedure and data provided a sound basis for large-scale industrial production.

关键词: ion-exchange     activated     supersaturation     tetrahedral     substitute    

Evaluating the impact of sulfamethoxazole on hydrogen production during dark anaerobic sludge fermentation

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1607-2

摘要:

● SMX promotes hydrogen production from dark anaerobic sludge fermentation.

关键词: Sulfamethoxazole     Hydrogen production     Dark anaerobic fermentation     Waste activated sludge    

标题 作者 时间 类型 操作

Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor

Sheng CHANG, Jianzheng LI, Feng LIU

期刊论文

High production of butyric acid by

Chao Ma,Jianfa Ou,Matthew Miller,Sarah McFann,Xiaoguang (Margaret) Liu

期刊论文

The role of lipids in fermentative propionate production from the co-fermentation of lipid and food waste

期刊论文

Purification and concentration of gluconic acid from an integrated fermentation and membrane process

Parimal Pal, Ramesh Kumar, Subhamay Banerjee

期刊论文

Detoxification and concentration of corn stover hydrolysate and its fermentation for ethanol production

Qing Li, Yingjie Qin, Yunfei Liu, Jianjun Liu, Qing Liu, Pingli Li, Liqiang Liu

期刊论文

Use of dry yeast cells as a cheap nitrogen source for lactic acid production by thermophilic

Kim Yng Ooi, Jin Chuan Wu

期刊论文

Metabolic flux analysis on arachidonic acid fermentation

JIN Mingjie, HUANG He, ZHANG Kun, YAN Jie, GAO Zhen

期刊论文

A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid

Tingting MA, Ying TENG, Peter CHRISTIE, Yongming LUO, Yongshan CHEN, Mao YE, Yujuan HUANG

期刊论文

Improved energy recovery from dark fermented cane molasses using microbial fuel cells

Soumya Pandit, Balachandar G, Debabrata Das

期刊论文

Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic

K. Manikandan, T. Viruthagiri

期刊论文

Repeated batch fermentation with water recycling and cell separation for microbial lipid production

Yumei WANG, Wei LIU, Jie BAO

期刊论文

Simultaneous saccharification and fermentation of sweet potato powder for the production of ethanol under

Yinxiu CAO, Hongchi TIAN, Kun YAO, Yingjin YUAN

期刊论文

Biological hydrogen production from organic wastewater by dark fermentation in China: Overview and prospects

Nanqi REN, Wanqian GUO, Bingfeng LIU, Guangli CAO, Jing TANG

期刊论文

Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates

Jinchao WEI, Qipeng YUAN, Tianxin WANG, Le WANG,

期刊论文

Evaluating the impact of sulfamethoxazole on hydrogen production during dark anaerobic sludge fermentation

期刊论文